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abstract Many authors have shown that a combined analysis of data from two or

more types of recapture survey brings advantages, such as the ability to provide more

information about parameters of interest. For example, a combined analysis of annual

resighting and monthly radio-telemetry data allows separate estimates of true survival

and emigration rates, whereas only apparent survival can be estimated from the resighting

data alone. For studies involving more than one type of survey, biologists should consider

how to allocate the total budget to the sur veys related to the diþ erent types of marks so

that they will gain optimal information from the surveys. For example, since radio tags

and subsequent monitoring are very costly, while leg bands are cheap, the biologists should

try to balance costs with information obtained in deciding how many animals should

receive radios. Given a total budget and speci® c costs, it is possible to determine the

allocation of sample sizes to diþ erent types of marks in order to minimize the variance of

parameters of interest, such as annual survival and emigration rates. In this paper, we

propose a cost function for a study where all birds receive leg bands and a subset receives

radio tags and all new releases occur at the start of the study. Using this cost function, we

obtain the allocation of sample sizes to the two survey types that minimizes the standard

error of survival rate estimates or, alternatively, the standard error of emigration rates.

Given the proposed costs, we show that for high resighting probability, e.g. 0.6, tagging

roughly 10- 40% of birds with radios will give survival estimates with standard errors

within the minimum range. Lower resighting rates will require a higher percentage of

radioed birds. In addition, the proposed costs require tagging the maximum possible

percentage of radioed birds to minimize the standard error of emigration estimates.
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1 Introduction

To obtain more information in studying a particular animal population, biologists

conduct multiple surveys using more than one marking technique. They obtain

several data sets corresponding to the diþ erent types of marks because of the use

of multiple marks. Rather than analysing each data set separately, a comprehensive

analysis should be carried out on the combined data sets in order to obtain as much

information as possible about the biology and sampling processes. Constructing a

joint likelihood for the combined data sets may permit the estimation of a greater

number of parameters and can increase the precision of estimates compared with

those from the separate analyses (Burnham, 1993; Lebreton et al., 1995; Tsai,

1996; Barker, 1997; Catchpole et al., 1998; Nasution et al., 2001).

In studies where dispersal or movement between sites are of interest, the use of

more than one type of mark could have important advantages. Given resighting

data from all sites, movement and survival can be separately estimated only if it is

assumed that all movement occurs at the beginning of the survival period (Brownie

et al., 1993). If in addition to the resighting data, telemetry data are obtained at all

sites at more frequent intervals, a combined analysis of both data types should

permit separate estimation of survival and movement under less restrictive

assumptions.

Developing the appropriate joint analysis for studies with more than one type of

mark is therefore an important area of research (Schwarz & Seber, 1999). A related

problem is to determine the most cost e þ ective allocation of resources to the two

(or more) types of recapture survey. For example, if the study will involve both

regular banding and radio tagging surveys followed by a combined analysis of the

resulting data, it is necessary to consider allocation of funds to cover both resighting

and relocation eþ orts, as well as the processes of capturing and marking new

animals using a leg band and /or a radio tag. Since the costs of marking and

recapture, as well as the recapture rates, are not the same for diþ erent types of

marks, the allocation of resources between radio tags and leg bands should be

considered carefully.

To optimize the allocation of the diþ erent mark types, a clear objective is required

(Barker et al., 1993). When the main reason for tagging animals is to obtain

information about survival and movement parameters, we could use, for example,

the precision of survival and /or movement estimates to develop optimality criteria.

When our main interest is estimation of survival rates, assuming a ® xed total cost,

the allocation of animals will be optimal if the variance of survival estimates

corresponding to this allocation is minimum. Alternatively, if emigration is the

parameter of greatest interest, assuming a ® xed total cost, the allocation of animals

will be optimal if the variance of emigration estimates corresponding to this

allocation is minimum.

In this paper, we investigate the optimal allocation of leg bands and radio tags

in a study that will include both resighting and radio-telemetry surveys, where the

availability of telemetry data enables us to consider either the precision of true

survival estimates or the precision of emigration estimates as the optimality

criterion. For simplicity, we consider a study in a single location, so that emigration

means dispersal or movement away from the study site. Since the costs associated

with radio tags and monitoring using radios are high compared to the cost of leg

bands and subsequent resighting surveys, we assume that the cheaper leg bands

are placed on all marked birds while radios are placed on relatively few birds. We
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assume annual resighting surveys and consider diþ erent sampling frequencies for

the telemetry surveys, as well as diþ erent costs, in studying optimal allocation.

2 Cost function

To construct a cost function for a study involving both resighting and telemetry

surveys, there are numerous practical issues relating to the timing and location of

the surveys that must be considered. To be speci® c, we base the likelihood and

cost function on the sampling procedures described by Bennetts et al. (1999) and

Nasution et al. (2001) for a study on a Snail Kite population in the Florida

Everglades. The following simplifying assumptions are made.

· Telemetry and resighting surveys are conducted independently in the same

area at the start of each year. Also, additional telemetry surveys may be

conducted at regular intervals within each year.

· All newly marked birds are released at the beginning of the study.

· All birds are marked as adults.

Note that, although we use a speci® c likelihood, the general principles of con-

structing a cost function can be applied broadly.

2.1 Cost function for the regular banding survey

In a regular banding study, the activities related to the cost are:

· capture of unmarked birds at each sampling time. The corresponding costs

are a function of the worker-hours needed per capture as well as equipment

costs (e.g. nets).

· banding newly captured birds. Costs are related to worker-hours needed to

apply leg bands and the costs of the bands.

· resighting the birds at each sampling time. Costs are related to equipment

needed for the survey and to the time spent resighting birds.

For this situation, we propose the following cost function:

C
s

5 c
0s
1 N s + c

1s
1 N s + +

K s + 1

i 5 2

c
2s
i (1)

where:

K s 5 the total number of annual resighting occasions,

N s 5 the number of newly banded birds released at time 1,

c
0s
1 5 cost of capturing a bird at sampling time 1,

c
1s
1 5 banding cost per bird at sampling time 1,

c
2s
i 5 cost of the resighting survey (including equipment and vehicle costs) at

sampling time i, i 5 2, . . . , K s + 1

It is certainly possible to consider increasing the eþ ort of resighting by modifying

the last part of equation (1) as a function of N s ; however, it is beyond the scope of

this paper. Note that, under this function, the capture and banding costs depend

on the number of birds that are banded, but the resighting cost is assumed to be

based on a predetermined limit of the e þ ort to be expended and is therefore

independent of the number of marked birds.
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2.2 Cost function for the radio-tagging survey

The activities related to the cost of a radio-tagging study are:

· capture of unmarked birds at each sampling time. The corresponding costs

are a function of the worker-hours needed per capture as well as equipment

costs (e.g. nets).

· tagging newly captured birds. Costs are related to worker-hours and to the

cost of the radio tags and other equipment. Radios are assumed to last for all

years of the radio tagging survey.

· relocation of both live and dead birds at each sampling time. Costs are related

to the time spent tracking birds with radio equipment, including worker-hours

and vehicle operating costs.

Under these activities, the cost function proposed is:

C
r

5 (C
0r
1,1 + c

1r
1,1 )N r + +

i

+
j

(c
2r
i, j + c

3r
i, j (E(m

r
i, j + d

r
i, j))) (2)

where:

R i R j 5 sum over relocating occasions at year i and sampling time j within year

i such that j 5 2, . . . , k if i 5 1 or j 5 1, . . . , k if i 5 2, . . . , K r or j 5 1 if

i 5 K r + 1,

K r 5 the total number of years in which marked birds are tracked using

radio telemetry,

k 5 the number of relocating eþ orts per year,

N r 5 the number of new releases at sampling time 1,

E(m
r
i, j ) 5 the expected number of radioed birds relocated alive at the j th sample

in year i,

E(d
r
i, j) 5 the expected number of radioed birds relocated dead at the j th sample

in year i,

c
0r
1,1 5 cost of capturing a bird at sampling time 1,

c
1r
1,1 5 cost per bird for radio tags at sampling time 1,

c
2r
i, j 5 ® xed equipment costs per telemetry survey at the j th sample in year i,

c
3r
i, j 5 cost per bird of relocating the bird at the j th sample in year i.

Again, capture and tagging costs are assumed to depend on the number tagged

(N r) and, in contrast to the resighting survey, relocation costs also depend on the

number of tagged birds because an eþ ort is made to locate the signal of each

individual radio tag.

If each bird receives only one type of mark (i.e. either a leg band or a radio tag),

the cost function in the combined surveys is the sum of equations (1) and (2). The

more common procedure is to place the cheaper leg bands on all birds and, in

addition, to place radio tags on a subset of these. In this case, the total number of

marked birds is N s and the capture costs do not depend on the type of tag received

(i.e. c
0r
1,1 5 c

0s
1 5 c

0
1 ). The cost function for the combined surveys is therefore:

C 5 c
0
1 N s + c

1s
1 N s + c

1r
1,1N r + +

i

c
2s
i + +

i

+
j

(c
2r
i, j + c

3r
i, j (E(m

r
i, j + d

r
i, j))) (3)

Using this combined cost function, given a ® xed total cost C, we will be able to

write N s as a function of N r or vice versa.
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3 Optimal allocation for estimation of true annual survival and

emigration

3.1 Likelihood function

Given resighting data from a banding study only, survival rate estimators are

actually estimators of `apparent survival’ , where apparent survival represents being

alive and present in the study area. An important advantage of telemetry data is

that (under certain assumptions about the emigration process) true survival ( u )

and ® delity (F ) can be estimated separately. To consider optimal allocation of

resources to resighting and telemetry surveys, we focus on separately estimating

true survival and emigration rates (1 2 F ), assuming it is of interest to distinguish

between these processes. Our objective is, therefore, to ® nd the optimal allocation

of resources by minimizing the standard error of the estimator of true annual

survival in the combined surveys of resighting and radio tagging given a speci® c

cost. Alternatively, the same approach can be used with minimizing the standard

error of the estimator of emigration.

We consider studies involving resighting and radio tagging surveys where all

birds are leg-banded and some of the birds are radio-tagged. For all cases, we

consider a single release of marked birds followed by two yearly resighting surveys

(K s 5 2). With respect to the telemetry surveys, we consider three situations each

with marked birds followed for two years (K r 5 2) and with the number of surveys

per year as follows:

Case 1: yearly radio-telemetry survey (k 5 1).

Case 2: six-monthly radio-telemetry survey (k 5 2).

Case 3: three-monthly radio-telemetry survey (k 5 4).

In theory, we can allow more frequent telemetry surveys, but computations are

tedious for k > 4. However, certain consistent ® ndings should carry over to

situations with more frequent telemetry surveys.

To develop a likelihood for the combined data, we also assume that the probability

of radio failure is 0, that dead birds are relocated at the end of the sampling interval

and that resighting and telemetry eþ orts do not interfere with each other. In

addition, we assume that emigration is permanent and occurs at the start of each

sampling interval.

Modifying the likelihood in Nasution et al. (2001) to account for emigration and

true survival, the joint likelihood for data from the combined surveys is:

L 5 L1 3 L2 3 L3 (4)

where L1 and L3 pertain to the birds that receive both radio tags and bands (radioed

birds) and L2 pertains to the birds that receive leg bands only (non-radioed birds).

Here,

L1 5 *
K r

i 5 1

*
k

j 5 1 { R
r
i, j !

P i ¢ , j ¢ [m
r
i, j, i ¢ , j ¢ !d i, j, i ¢ , j ¢ !] f *

i ¢ , j ¢
p

m r
i, j,i ¢ , j ¢

li, j, i ¢ , j ¢ p
di, j, i ¢ , j ¢
di, j, i ¢ , j ¢ g v

r (R r
i, j

2 r r
i, j

)

i, j } (5)

with:

R
r
i, j 5 the number of radioed birds released after the j th sample in year i

including newly and previously marked birds (i 5 1, . . . , K1 , j 5 1, . . . , k),
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r
r
i, j 5 the total number of radioed birds later relocated by radio, or by

resighting, of the R
r
i, j birds released after the j th sample in year i

(i 5 1, . . . , K r , j 5 1, . . . , k). The birds may be relocated alive or dead,

m
r
i, j, i ¢ , j ¢ 5 the number of radioed birds released, or relocated by radio in the j th

sample in year i and next relocated alive in the j th sample in year i ¢ ,
d i, j, i ¢ , j ¢ 5 the number of radioed birds released or relocated by radio in the j th

sample in year i and next relocated dead in the j th sample in year i ¢ ,
p li, j, i ¢ , j ¢ 5 the probability that a radioed bird last relocated at year i, time j is next

relocated alive at year i ¢ , time j ¢ ; i ¢ 5 i, . . . , K r + 1, and j ¢ 5 j + 1, . . . , k if

i ¢ 5 i or j ¢ 5 1, . . . , k if i ¢ > i or j ¢ 5 1 if i ¢ 5 K r + 1,

p di, j, i ¢ , j ¢ 5 the probability that a radioed bird last seen at year i, time j is next found

dead at year i ¢ , time j ¢ ; i ¢ 5 i, . . . , K r , and j ¢ 5 j + 1, . . . , k if i ¢ 5 i or

j ¢ 5 1, . . . , k if i ¢ > i or j ¢ 5 1 if i ¢ 5 K r + 1,

and

v
r
i, j 5 the probability a radioed bird released at sampling time j is never

found again (i.e. never relocated again by radio and never resighted)

(i 5 1, . . . , K r , j 5 1, . . . , k),

L2 5 *
K s

i 5 1 { R
s*i !

P Ks + 1
j 5 i +1 m

s*i, j ! f *
K s + 1

j 5 i + 1

p
m s*

i, j

si, j g v
s(R s*

i
2 r s*

i )

i } (6)

with:

R
s*i 5 the number of non-radioed birds released or resighted at year i

(i 5 1, . . . , K s ),

r
s*i 5 the total number of non-radioed birds resighted after year i of the R

s*i
birds released at i (i 5 1, . . . , K s),

m
s*i, j 5 the number of non-radioed birds released or resighted at year i that are

next resighted at year j (i 5 1, . . . , K s , j 5 i + 1, . . . , K s + 1),

p si, j 5 the probability any banded bird alive at year i is next resighted at year

j, i 5 1, . . . , K s , j 5 i + 1, . . . , K s + 1,

v
s
i 5 the probability a non-radioed bird released or resighted at year i is never

resighted again (i 5 1, . . . , K2 ),

and

L3 5 *
min(K r ,K s ) + 1

i 5 2

m
r
. , . , i,1 !

m
rs
. , . , i,1 !(m

r
. , . , i,1 2 m

rs
. , . , i,1 )!

p
mrs

. , . , i,1
rsi (1 2 p rsi )

(m r
., . , i,1 2 m rs

., . , i,1 ) (7)

where:

m
r
. , . , i,1 5 the total number of radioed birds relocated by radio at the start of year i,

m
rs
. , . , i,1 5 the total number of the m

r
. , . , i,1 radioed birds relocated by radio at the

start of year i that are also resighted at the start of year i (i 5 2, . . . , K r ),

p rsi 5 the probability a bird alive at year i is resighted at year i given it is also

relocated at i.

Assuming that survival is constant within years and that emigration occurs with

the same probability following each telemetry survey, then the cell probabilities

p li, j, i ¢ , j ¢ , p di, j, i ¢ , j ¢ , p si, j and p rsi are functions of the following parameters.
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Table 1. Selected cell probabilities for the product- multinomial likelihood with k 5 4

When

Parameter last seen next seen Cell probability

p l1,1,1 ,2 1,1 1,2 u
1/4
1 F

1/4
1 pr1,2

p l1,1,1 ,3 1,1 1,3 u 1/4
1 F

1/4
1 qr1,2 u 1/4

1 F
1/4
1 pr1,3

p l1,1,1 ,4 1,1 1,4 u 1/4
1 F

1/4
1 qr1,2 u 1/4

1 F
1/4
1 qr1,3 u

1/4
1 F

1/4
1 pr1,4

p l1,1,2 ,1 1,1 2,1 u 1/4
1 F

1/4
1 qr1,2 u 1/4

1 F
1/4
1 qr1,3 u

1/4
1 F

1/4
1 qr1,4 u 1/4

1 F
1/4
1 pr2,1

:
p d 1,1 ,1 ,2 1,1 1,2 (1 2 u 1/4

1 )F
1/4
1 p r1,2

p d 1,1 ,1 ,3 1,1 1,3 u 1/4
1 F

1/4
1 qr1,2 (1 2 u 1/4

1 ) F
1/4
1 pr1,3

p d 1,1 ,1 ,4 1,1 1,4 u 1/4
1 F

1/4
1 qr1,2 u 1/4

1 F
1/4
1 qr1,3 (1 2 u 1/4

1 )F
1/4
1 p r1,4

p d 1,1 ,2 ,1 1,1 2,1 u 1/4
1 F

1/4
1 qr1,2 u 1/4

1 F
1/4
1 qr1,3 u

1/4
1 F

1/4
1 qr1,4 (1 2 u 1/4

1 ) F
1/4
1 pr2,1

:
p s1,2 1 2 u 1 F1 ps2

p s1,3 1 3 u 1 F1 qs2 u 2 F 2 ps3

p s2,3 2 3 u 2 F2 ps3

p rs2 2 2 ps2

p rs3 3 3 ps3

u i 5 the probability that a bird survives from year i to year i + 1,

1 2 F i 5 the probability that a bird emigrates out of the study area between year

i and year i + 1,

p ri, j 5 the probability a radioed bird present in the study area at sampling time

j in year i is relocated by radio at sampling time j,

p si 5 the probability that a bird alive and in the study area at year i is resighted

at year i.

Table 1 displays selected cell probabilities p li, j, i ¢ , j ¢ , p di, j, i ¢ , j ¢ , p si, j and p rsi for case 3 in

which there are k 5 4 telemetry surveys per year.

To simplify computations, we further assume that survival rates, emigration

rates, resighting rates and relocation rates are constant across years. As a result,

the cell probabilities in Table 1 will have u i 5 u , F i 5 F, p ri, j 5 pr and psi 5 ps and the

joint likelihood in equation (4) will be a function of h 5 ( u , F, p r , ps)
t . As described

in Nasution et al. (2001), maximum likelihood estimates (MLEs) of h must be

obtained using a numerical optimization procedure such as that in program

SURVIV (White, 1992).

3.2 Determining optimal sample sizes in the combined survey

Our objective is to minimize V( u Ã ) where u Ã is the MLE of u obtained from the

likelihood in equation (4) as described above. Alternatively, our objective could be

to minimize V(1 2 FÃ ) 5 V(FÃ ) obtained from the same likelihood. It is not possible

to obtain an explicit expression for V( u Ã ) or for V(FÃ ), and so it is not possible to

obtain an explicit solution for the sample sizes N r and N s that minimize V( u Ã ) or

V(FÃ ) for a ® xed cost. Instead, we use a computational approach that involves (i)

specifying values for all costs and parameters in equation (3), (ii ) determining a

range of sample sizes (N r , N s) that satisfy the cost equation, and (iii ) calculating

V( u Ã ) for the series of (N r , N s ) pairs in order to ® nd the values that minimize V( u Ã ).

If optimizing with respect to FÃ , then V(FÃ ) would be computed in (iii ).
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Table 2. Numbers of radio-tagged birds and banded birds, N r and N s, that satisfy the cost equation

for cases 1, 2 and 3*

Case

1 2 3

N r N s N r /N s N r N s N r /N s N r N s N r /N s

20 1488 0.013 20 1386 0.014 20 1158 0.017

40 1359 0.029 40 1245 0.032 40 993 0.040

60 1230 0.049 60 1103 0.054 60 828 0.072

80 1100 0.073 80 961 0.083 80 662 0.121

100 971 0.103 100 820 0.122 100 497 0.201

120 842 0.142 120 678 0.177 120 332 0.361

140 713 0.196 140 537 0.261 140 167 0.835

160 583 0.274 160 395 0.404

180 454 0.396 180 254 0.708

200 325 0.615

*See Section 3.2 for speci® c costs

(i ) Based roughly on the study in Bennetts et al. (1999), we selected the following

values of costs: C 5 100 000, c
0
1 5 40, c

1,r
1,1 5 250, c

1s
1 5 4.5, c

2s
i 5 12000, c

2r
i, j 5 2000

and c
3r
i, j 5 30, ; i, j. It is also necessary to specify values for the parameters u , F and

pr as these are needed to obtain E(m
r
i, j + d

r
i, j ) in the cost equation. The values used

in each of the cases 1, 2 and 3 were u 5 0.49, F 5 0.95 and p r 5 0.9. The resighting

probability ps does not appear in the cost equation, but is required to compute

V( u Ã ) in (iii ) below. We used two values of p s , speci® cally ps 5 0.2 and ps 5 0.6, with

each of cases 1, 2 and 3.

(ii ) We then use equation (3) to obtain an expression for N s as a function of N r

given by

N s 5
(C 2 R ic

2s
i 2 c

1r
1,1N r 2 R i R j c

2r
i, j 2 R i R j c

3r
i (E(m

r
i, j + d

r
i, j)))

(c
1s
1 + c

0
1 )

(8)

Based on practical considerations, we consider values of N r ranging from 20 to 200

and, using equation (8) with the costs and parameters speci® ed in (i ), we solve for

the corresponding values of N s . Resulting values of (N r , N s ) for cases 1, 2 and 3

are given in Table 2, together with the ratio N r /N s , which represents the fraction

of banded birds that also receive a radio.

(iii ) Under certain regularity conditions, the MLE h Ã will asymptotically be

N( h , V( h Ã )) with V( h Ã ) 5 I ( h ) 2 1 (Azzalini, 1996) and the asymptotic variance of u Ã

is the leading diagonal element of V( h Ã ). The asymptotic variance of (FÃ ) is the

second diagonal element of V( h Ã ). Catchpole & Morgan (1997) give the general

expression for the expected information matrix I ( h ) for a multinomial distribution,

which can be generalized for a product multinomial distribution, i.e.

I ( h ) 5 D (
2 1

D
t (9)

with ( 5 diag( l ) and

D 5 ( ¶ l j

¶ h i ) i 5 1, . . . ,4, j 5 1, . . . , ncell
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Here, l is a vector consisting of the expected values of all possible outcomes in

the product-multinomial distribution and ncell 5 3K r k + 2(K s + min(K r , K s)) +
R K2 2 1

i 5 1 (K2 2 i ) + 2 R K rk 2 1
j 5 1 (K r k 2 j).

For example, for case 1, ncell 5 17,

l
t
5 (R

r
1,1 p l1,1,2,1 , R

r
1,1 p l1,1,3,1 , R

r
1,1 p d1,1,2,1, R

r
1,1 p d1,1,3,1,

R
r
1,1 (1 2 p l1,1,2,1 2 p l1,1,3,1 2 p d1,1,2,1 2 p d1,1,3,1),

R
r
2,1 p l2,1,3,1 , R

r
2,1 p d2,1,3,1 , R

r
2,1 (1 2 p l2,1,3,1 2 p d2,1,3,1),

m
r
. , . ,2,1p s2 , m

r
. , . ,2,1(1 2 ps2 ), m

r
. , . ,3,1ps3 , m

r
. , . ,3,1(1 2 p s3 ),

R
s
1 p s1,2 , R

s
1 p s1,3 , R

s
1 (1 2 p s1,2 2 p s1,3 ), R

s
2 p s2,3 , R

s
2 (1 2 p s2,3))

To obtain V( u Ã ) or V(FÃ ) for case 1, elements of l and D must be calculated and

I ( h ) 2 1 obtained using, for example, the IMSL (1987) FORTR AN subroutine

LINRG to invert the 4 3 4 matrix I ( h ).

For cases 2 and 3, the number of possible outcomes is 33 and 89, respectively,

and obtaining I ( h ) using equation (9) is tedious. An alternative approach for

computing V( u Ã ) or V(FÃ ) is to calculate the expected frequencies corresponding to

the elements of l and to feed these as `data’ to program SURVIV. These expected

counts are not integers and SURVIV must be modi® ed to accept non-integer data.

The numerical algorithm in SURVIV is a quasi-Newton iterative method (Rustagi,

1994) that produces MLEs and an estimate of V( h Ã ). When applied to the expected

counts, SURVIV produces the same values for V( u Ã ) and V(FÃ ) as derived using

equation (9).

Standard errors, SE( u Ã i), computed directly from equation (9) and by using

SURVIV on the expected counts, are graphed against (N r , N s ) in Fig. 1 for case 1.

From this ® gure, we can see that using either I ( h ) 2 1 from equation (9) or the

quasi-Newton iterative solution from SURVIV produces the same curve. When the

resighting rate is high, i.e. ps 5 0.6, the standard error curve is almost ¯ at for a

wide range of (N r , N s ) values. As long as the N r values are not too low, the standard

error of survival estimates will be close to the minimum. In practice, when the

resighting rate is high enough, the optimal strategy will be to put radios on roughly

10% to 40% of the total marked birds. Although ® gures for cases 2 and 3 are not

shown, the curves under these cases give similar patterns. When the resighting rate

is low (ps 5 0.2), the standard errors of survival estimators tend to decrease as N r

increases. A steep decrease occurs at the lowest values of N r (i.e. when N r /N s is

very low). Figure 1 shows results for N r values between 20 and 200; however, the

minimum standard error is reached at N r 5 211, N s 5 254. In practice, when the

resighting rate is low, the optimal strategy will be to put radios on a higher

percentage of birds, say 40% to 80% of the total marked birds.

If estimating emigration is the objective, the above procedure would focus on

V(1 2 FÃ ) 5 V(FÃ ). Thus, Fig. 2 displays the standard error of FÃ as a function of

(N r , N s ). Regardless of the values of ps , we see that SE(FÃ ) decreases as N r increases.

Further attempts to compute SE(FÃ ) for higher N r values continue to give lower

SE(FÃ ). Although the ® gures are not shown, the pattern remains the same under

cases 2 and 3. Additional computations were carried out with the same functions

and parameter values but with F 5 0.5 instead of F 5 0.95 (results are not shown).

Again, the optimal strategy for estimating F in practice is to put radios on the

maximum possible number of birds.
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Fig. 1. Survival standard error curves under case 1. (a) Case 1, u 5 0.49, F 5 0.95, p r 5 0.9, p s 5 0.2;

(b) case 1, u 5 0.49, F 5 0.95, pr 5 0.9, ps 5 0.6 large sample approx.: circle (SURVIV), triangle

( ] (µ) 2 1); simulation: dot (1000 3 ) C 5 100 000, c
0r
1,1 5 40, c

1r
1,1 5 250, c

2r
5 2000, c

3r
5 30, c

0s
1 5 40,

c
1s
1 5 4.5 and c

2s
5 12 000.
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Fig. 2. Emigration standard error curves under case 1. (a) Case 1, u 5 0.49, F 5 0.95, pr 5 0.9, p s 5 0.2;

(b) case 1, u 5 0.49, F 5 0.95, pr 5 0.9, ps 5 0.6 large sample approx.: circle (SURVIV), triangle

( ] (µ) 2 1); simulation: dot (1000 3 ) C 5 100 000, c
0r
1,1 5 40, c

1r
1,1 5 250, c

2r
5 2000, c

3r
5 30, c

0s
1 5 40,

c
1s
1 5 4.5 and c

2s
5 12 000.
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Table 3. The large sample standard error of pÃ r*

Case 1 Case 2 Case 3

N r pr 5 0.9 pr 5 0.9 p r 5 0.9

20 0.102 0.056 0.036

40 0.072 0.040 0.025

60 0.059 0.032 0.021

80 0.051 0.028 0.018

100 0.046 0.025 0.016

120 0.042 0.023 0.015

140 0.039 0.021 0.014

160 0.036 0.020

180 0.034 0.019

200 0.033

*when ps 5 0.6; se( pÃ r) when ps 5 0.2 is similar.

Table 4. The large sample standard error of pÃ s

Case 1 Case 2 Case 3

N r ps 5 0.2 ps 5 0.6 ps 5 0.2 ps 5 0.6 ps 5 0.2 ps 5 0.6

20 0.029 0.033 0.030 0.034 0.032 0.037

40 0.027 0.033 0.027 0.034 0.029 0.037

60 0.026 0.033 0.026 0.035 0.028 0.038

80 0.025 0.034 0.025 0.035 0.028 0.040

100 0.024 0.034 0.025 0.036 0.028 0.041

120 0.024 0.034 0.025 0.037 0.031 0.044

140 0.024 0.035 0.026 0.038 0.040 0.050

160 0.025 0.036 0.028 0.039

180 0.026 0.037 0.032 0.043

200 0.029 0.039

The standard errors of pÃ r and pÃ s are presented in Tables 3 and 4. Standard errors

for pÃ r decrease when N r increases, with the sharpest decrease occurring when N r is

relatively small. In contrast, the standard errors of pÃ s seem to be relatively constant

although there is a slight tendency to be higher for larger N r , smaller N s .

4 Simulation study to assess variance approximations

Up to now we have discussed optimization based on using a large sample approxi-

mation to compute V( u Ã ) or V(FÃ ). However, we do not know whether these

approximations are accurate for the sample sizes (N r , N s ) studied in Section 3.

Thus, it is important to validate the results derived from the large sample approxi-

mation and the only way to do this is by using Monte Carlo simulation (Fishman,

1996). The likelihood, parameter values and values of (N r , N s ) used in the simula-

tion are the same as for cases 1, 2 and 3 in Section 3. Note that there are two sets

of parameter values corresponding to ps considered for each case. The outline for

the simulation is as follows.

(1) Generate a data set from the product multinomial distribution presented in

equations (4) to (7) for a ® xed pair of (N r , N s ) from Table 2 and a ® xed set

of parameter values.
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(2) Calculate the estimates and standard errors using program SURVIV.

(3) Repeat Steps 1 and 2 for n 5 1000 replications.

(4) Repeat Steps 1, 2 and 3 for the other possible values of (N r , N s ) and ps .

The product-multinomial data are obtained by applying the RNMTN routine in

the FORTR AN-IMSL library. The RNMTN routine generates pseudo-random

numbers from a K-variate multinomial distribution with parameters N and

P 5 ( p 1 , . . . , p K ) where K and N are positive. Each cell frequency x i in the

multinomial is successively generated from a B inomial(M i , p i ) distribution where

M 1 5 N, p1 5 p 1 , M i 5 N 2 R i 2 1
j 5 1 x j and p i 5

p i

1 2 R i 2 1
j 5 1 p j

for i 5 2, . . . , K 2 1.

The variance of the MLE u Ã is calculated from the simulation results for a

given set of (N r , N s) and ps using the unbiased variance estimator VÃ ( u Ã ) 5
(1/(n 2 1)) R ( u Ã i 2 u Ãu

Å
. )

2. Note that here the u Ã i are the survival estimates obtained

from the n 5 1000 simulation data sets.

The Monte Carlo estimates of SE( u Ã ), obtained as VÃ ( u Ã ), are presented in Fig.

1 for case 1. From this ® gure, we can see that the simulation results generally agree

well with the large sample standard errors. However, when the number of radioed

birds is very low, the large sample approximation overestimates the small sample

standard error. Although the ® gures are not shown for cases 2 and 3, the large

sample approximation improves when the number of telemetry sampling times per

year increases for small values of N r .

Similarly for the Monte Carlo estimates of SE(FÃ ) obtained as VÃ (FÃ ), presented

in Fig. 2 for case 1. We can see that the large sample approximation overestimates

the small sample standard error unless N r is high. For small values of N r , the large

sample approximation improves when the number of telemetry sampling times per

year increases (® gures are not shown). The large sample approximation is less

accurate for V(FÃ ) than for V( u Ã ), at least in part, because the value of F is close to 1.

5 Discussion

To investigate the optimal allocation of sample sizes between banding and radio-

tags, we have considered a simple cost function and simple study designs with a

single release of newly marked birds, only two years of follow up and at most four

telemetry surveys per year. Even in the simplest case (case 1) it was not possible

to obtain an analytical solution with explicit formulas for the optimal (N r , N s).

Results in Fig. 1 are therefore speci® c to the parameter values and costs assumed.

Certain qualitative trends may hold more generally. For example, we showed that

if the resighting rate is high, e.g. 0.6, tagging roughly 10- 40% of the banded birds

with radios gave survival estimators with standard errors close to the minimum.

Given similar costs to those used, lower resighting rates, e.g. 0.2, will require a

higher percentage of radioed birds (roughly between 40% and 80% of the total

marked birds) to achieve the standard errors close to the minimum. Under the

proposed costs, the maximum possible percentage of radioed birds is needed to

minimize the standard error of emigration estimates regardless of the resighting

rates.

In this paper, we used the precision of annual survival estimates assuming

constant survival rates across time as the optimality criterion. However, there are

other possible optimality criteria that may be considered. For example, since radio
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telemetry data make it possible to estimate within-year variation in survival, the

power to detect seasonal eþ ects on survival could be a useful optimality criterion.

The cost function considered in this paper is limited to the situation where all

the birds are released at the start of the year. In 1989, Pollock introduced the

staggered entry design under which radioed birds enter the study at several times

during the year. It would be useful to build a cost function that allows newly

marked animals to enter the study following each telemetry survey and determine

the optimal allocation of sample sizes for this situation.

There are many factors to be considered in constructing a cost function for the

combined surveys. Accurate information about costs in both surveys is important.

Modi® cations that produce more ¯ exible and more realistic cost functions should

be considered. For example, instead of considering the costs needed in each survey

separately, a cost function that incorporates the ratio of costs for the two surveys

could be more useful to biologists. It may also be possible to build in a relationship

between costs and resighting and relocation rates.

The scope of this research is limited to the allocation of sample sizes when

resighting and radio telemetry surveys are carried out on a single population. It

would be useful to study optimal allocation of resources in more complex situations,

for example, where resighting and telemetry data are obtained from several sites in

order to estimate true survival and movement between sites. Also of interest is the

situation where resighting and telemetry data are obtained from diþ erent age

classes of birds, so that the optimization is related to the precision of age-dependent

survival or ® delity estimates. Optimal allocation can also be considered for combina-

tions of other data types, such as the combined analysis of resighting and recovery

data considered by Burnham (1993).
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